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G
raphene, a single sheet of carbon
atoms, has attracted a lot of inter-
est since it was isolated from bulk

graphite a few years back.1 The unique

band structure of this 2D material and the

near massless behavior of its charge carri-

ers give rise to many interesting electronic

and transport properties.2 While graphene

is gapless, a band gap can be opened by

cutting graphene sheets into 1D nano-

ribbons or 0D quantum dots. The band gap

of such nanostructures depends on both

the edge type and ribbon widths or dot

sizes, making graphene a very interesting

material for potential electronics applica-

tions. Recent theoretical and experimental

work has shown that the edges of graphene

nanoribbons strongly influence their elec-

tronic and magnetic properties. Therefore,

much effort has been devoted to control-

ling the structure of edges in graphene.2

While graphene is normally terminated

by zigzag and armchair edges, recent theo-

retical calculations have predicted the exist-

ence of new reconstructed structures,3

which have since been observed in high-

resolution microscopy experiments (Figure

1).4,5 Among all the possible edge struc-

tures, first-principle calculations show that

the zigzag edges reconstructed with five-

and seven-membered carbon rings are

most favorable from an energetic point of

view since they contain fewer dangling

bonds at the edges.3 More significantly, re-

cent work also shows that reconstructions

can alter the state of stresses at the

edges.6,7 While the edge stresses in zigzag

and armchair edges are compressive,6�8 at-

omistic calculations predict that both the

5�7 reconstructed edges7 (Figure 1a) and

5�6 reconstructed armchair edges6 (Figure

1b) are under states of tensile edge stresses.

It has been shown that compressive stresses

at zigzag and armchair edges lead to warp-

ing and twisting instabilities in graphene

sheets and nanoribbons.9,10 Warping and

rippling of graphene nanostructures have

also been observed recently.11 Given the

fact that low-energy reconstructed edges

are under a state of tensile stress, a natural

question to ask is whether instabilities are

expected in this case, and if so, what the na-

ture of these instabilities are, and how they

differ from those of zigzag and armchair

cases.

In this article, using a combination of at-

omistic simulations and continuum models

for large deformations of elastic plates, we

show that, in distinct contrast to unrecon-

structed edges, tensile stresses at the recon-

structed edges lead to curling up of

graphene sheets into cylindrical surfaces

with tapered ends and to rippling of nano-

ribbons. The key difference that results in

distinct morphologies for the two cases is

the propensity of the edge to stretch

(shrink) under the influence of compressive

(tensile) edge stresses. While out-of-plane
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ABSTRACT Recent microscopy experiments have revealed novel reconstructions of the commonly observed

zigzag and armchair edges in graphene. We show that tensile edge stresses at these reconstructed edges lead to

large-scale curling of graphene sheets into cylindrical surfaces, in contrast to the warping instabilities predicted for

unreconstructed edges. Using atomic-scale simulations and large deformation plate models, we have derived

scaling laws for the curvature and strain of the curled sheets in terms of the edge stress, shape, and the bending

and stretching moduli. For graphene nanoribbons, we show that tensile edge stress leads to periodic ripples,

whose morphologies are distinct from those observed due to thermal fluctuations or thermally generated

mismatch strains. Since the electronic properties of graphene can be altered by both curvatures and strain, our

work provides a route for potentially fabricating nanoelectronic devices such as sensors or switches that can detect

stresses induced by dopants at the edges.
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warping from the initially flat configuration will always

lead to stretching, for the edges to shrink, as we show

below, the sheets have to first curl into a nearly cylindri-

cal surface. The curvatures of the curled structures de-

pend on the magnitude of the edge stresses, the di-

mensions of the sheets, and both the bending and

stretching moduli of the sheets. In addition, we find

that long and narrow nanoribbons can adopt rippled

morphologies that consist of curved segments of nearly

equal curvature and large strain at the edges. Using

continuum plate models, we have derived closed-form

analytical solutions for the curvatures and strains in

curled sheets that are in excellent agreement with ato-

mistic simulations. While we have confined our atten-

tion to cases where tensile stresses are induced by re-

constructions, our theory also applies to cases where

stresses arise due to adsorption of atoms on or in the vi-

cinity of the edges. Since the electronic properties can

be altered by both curvatures and strain,2 our work pro-

vides a route for engineering the deformation of the

sheets by partially or fully decorating the edges.

RESULTS AND DISCUSSION
Here, the instabilities of reconstructed edges are

studied using the reactive bond order (AIREBO)12 po-

tential as implemented in the molecular dynamics pack-

age LAMMPS13 (see Methods). First, we consider a

nearly square-shaped sheet where the armchair and

zigzag edges are reconstructed with 5�6 and 5�7

structures, respectively. For the former case, the AIREBO

potential predicts an edge stress of 24.4 eV/nm while

the stress in the latter case is only 0.02 eV/nm. Since the

edge stress is negligible in the latter case, the instabili-

ties that we study arise solely from the 5�6 structure.

Upon relaxation, the sheets curl about an axis perpen-

dicular to the armchair edge with their ends arching in-

ward, as shown in Figure 2. We find two modes of curl-

ing; the first mode is a cylindrical surface with tapered

ends, while the second mode is composed of two cylin-

drical surfaces with curvatures that are opposite in

sign but are equal in magnitude to that of the first

mode and are smoothly connected at the center of

the sheet. Compared to the relaxed planar configura-

tion, curling leads to an energy gain of 11.7 and 5.6 eV

for the first and second modes, respectively.

To study the effect of geometry on curling, next we

consider the shapes of nanoribbons whose long edges

are terminated by 5�6 armchair edges with large ten-

sile stresses (Figure 3). Here, we show three modes

which are composed of segments of cylindrical sur-

faces with tapered ends and whose curvatures alter-

nate in sign from one end of the ribbon to the other.

The magnitudes of the curvatures of each of these seg-

ments are, however, nearly equal. In this regard, there

are important differences between the “ripples” in-

duced by tensile stresses seen in Figure 3b,c and those

induced by compressive stresses arising from unrecon-

structed edges9,10 as well as sinusoidal ripples seen in

suspended nanoribbons due to thermal strains.14 Un-

like the ripples in Figure 3, ripples due to compressive

stresses are localized at the edges. For the sinusoidal

ripples in suspended films, the curvatures vary in a sinu-

soidal manner across the length of the ribbon, whereas

the ripples in Figure 3 are characterized by segments

of nearly constant curvature. We also note that as in the

case of the curled shapes of sheets in Figure 2, from

an energetic point of view, modes with fewer “domain”

boundaries, where the curvatures switch sign, are lower

in energy; the energy gained by formation of mode (a)

in Figure 3 is higher than that of (b) and (c) by 2.2 and

10.3 eV, respectively.

Why do the sheets curl and how are the curvatures

related to the edge stresses and the elastic properties

of the sheet? We answer these questions next using

both finite element simulations and a large deforma-

tion model for elastic plates. In our finite element

model, graphene is modeled as an elastic plate, whose

Young’s modulus Ep and thickness t are computed by

equating the effective 2D modulus, Ept � E � 2000

eV/nm2,9,15 and flexural rigidity to the bending modu-

Figure 1. (Top) Graphene sheets with zigzag and armchair edges reconstructed with pentagon�heptagon (a) and
pentagon�hexagon (b) structures, respectively. (Bottom) Reconstructed structures observed in recent experiments.4,5

A
RTIC

LE

www.acsnano.org VOL. 4 ▪ NO. 8 ▪ 4840–4844 ▪ 2010 4841



lus of graphene, Ept3/12(1 � �2) � Mb � 1 eV. Residual

stresses corresponding to the edge stresses for recon-

structed armchair and zigzag orientations are assigned

to the finite elements at the appropriate edges of the
sheet. The results of our simulations are given in Figures
2 and 3. In all cases, the deformed sheets closely re-
semble the shapes observed in atomistic simulations,
confirming that tensile edge stresses are responsible for
the curling of the sheets.

Next, we develop an analytical description of curl-
ing using the Föppl-von-Kármán16 (FvK) large deflec-
tion theory for elastic plates. Our goal is to determine
how the radius of curvature (R0), the edge deflection
(Ar), and the penetration depth (�r) depend on the ma-
terial and geometric parameters (refer to Figure 4). To
this end, we consider the kinematics of curling which in-
volves (1) pure bending of the flat sheet to a cylindri-
cal surface without any stretching and (2) displacement
of the material points on this cylinder initially at (R0, z),
both radially and along the cylinder axis, so that the
new coordinates (R, Z) can be written as

where ui are the displacement fields. On the basis of
FvK theory, the principal strains and curvatures arising
from this deformation field are

where = indicates differentiation with respect to z, and
a and � denote, respectively, the axial and circumferen-
tial components. Using these fields, the edge, stretch-
ing, and bending energies per unit length of the 5�6
armchair edge can be written as

where � is the edge stress, M � E/(1 � �2) is the stretch-
ing modulus in which E and � are the 2D Young’s modu-
lus and Poisson’s ratio, respectively, and Mb is the bend-
ing modulus. Note that each of the terms in eq 3 has
been multiplied by 2 to account for the contributions
from the top and bottom halves.

A variational solution to the FvK equations can be
obtained by using the ansatz

where Ai and �i are, respectively, the amplitudes and
penetration depths of the displacement fields. These
parameters and the radius R0 can then be determined
by minimizing the total energy, Et � Ee � Es � Eb. While
this can be readily carried out numerically, we have
found that accurate and compact closed-form expres-

Figure 2. (a,b) Shapes of curled 8.24 nm (armchair) � 8.23 nm (zigzag) edge-
reconstructed graphene sheets obtained by relaxing perturbed graphene lat-
tice with the AIREBO potential. (c,d) Curled shapes obtained from finite ele-
ment simulations that explicitly account for tensile edge stresses.
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sions can be found if terms proportional to the

Poisson’s ratio in eq 3 are ignored. As we show below,

for graphene with � � 0.15,17 retaining these terms

leads to very small (	5%) differences in the variational

parameters. If these terms are ignored, the total energy

is quadratic in the circumferential strain, and this contri-

bution vanishes when Az � 1/4(Ar
2/�r) and �z � �r/2. Us-

ing this result in eq 3, the total energy can be expressed

as

Minimizing the total energy, we obtain the parameters

that characterize the deformation of curled sheets and

the compressive strain 
0 � Ar/R0 at the edge:

It is interesting to note that the maximum strain and

curvature increase with decreasing width, L. This is

clearly seen in Figure 3, where the nanoribbons are

much more curved compared to the wider sheet con-

sidered in Figure 2.

A comparison of the predictions of the analytical

model with atomistic simulations and numerical mini-

mization of the total energy in eq 3 (where we retain

the terms proportional to the Poisson’s ratio) is given

in Table 1. We find very good agreement of the analyti-

cal results with both atomistic simulations and numeri-

cal results. It is interesting to note that the strain at the

edge and radius of curvature in the case of nanoribbons

in Figure 3 with a width of 1.7 nm can be as large as

�14% and 1.3 nm, respectively. Since both strain and

curvature scale inversely with the width and the elec-

tronic properties strongly depend on state of deforma-

tion, the electronic structure of the curled and rippled

structures can be considerably different from that of

planar nanoribbons. First-principle calculations predict

an edge stress of 12 eV/nm for the 5�7 zigzag recon-

struction;7 the deformation in this case can be analyzed

following the continuum models developed here.

While this article was under review, a report18 ap-

peared of the observation of spontaneous curving of

graphene flakes due to formation of pentagon rings at

the edges similar to the cases considered in our work.

Transmission electron microscopy studies show that

curving eventually leads to formation of fullerenes. The

four critical steps in a top-down mechanism of fullerene

Figure 3. (Top) Shapes of warped 13.2 nm (armchair) � 1.7 nm (zigzag) edge-reconstructed graphene nanoribbons obtained
by relaxing perturbed graphene lattices with the AIREBO potential. (Bottom) Shapes of graphene nanoribbons obtained
from finite element simulations that explicitly account for tensile edge stresses.

Figure 4. Schematic of the top-half of curled graphene
sheets. The symbols are explained in the text.
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TABLE 1. Radius of Curvature (R0), Edge Deflection (Ar),
and Penetration Depth (�r) Obtained Using Different
Approachesa

AIREBO analytical numerical

size R0 Ar �r R0 Ar �r R0 Ar �r

8.24 � 8.23 3.75 0.18 0.38 3.89 0.19 0.39 3.87 0.18 0.39
16.62 � 16.45 6.00 0.31 0.61 6.01 0.23 0.48 6.14 0.23 0.49
13.2 � 1.7 1.28 0.19 0.35 1.31 0.11 0.22 1.39 0.11 0.24

aAll lengths are given in nanometers. For the analytical and numerical calculations,
we have used � � 24.4 eV/nm, M � 2000 eV/nm2, and Mb � 1 eV.
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formation are (i) loss of carbon atoms at the edge of
graphene, leading to (ii) the formation of pentagons,
which (iii) triggers the curving of graphene into a bowl-
shaped structure and which (iv) subsequently zips up
its open edges to form a closed fullerene structure.
These structures are formed in both free-standing flakes
and on flakes resting on graphene sheets, indicating
that the driving force for curling is able to overcome
the interactions with the underlying support.

CONCLUSIONS
In summary, we have shown that tensile stresses at

the reconstructed graphene edges lead to instabilities
that are distinct from the instabilities in zigzag- and
armchair-terminated sheets and nanoribbons. In par-
ticular, these stresses lead to curling of graphene sheets
and nanoribbons as well as significant strain at the
edges. Compared to the case of compressive edge
stress, the deformation/curvature we have observed

here can span the entire size of the sample. We have de-
rived analytical results that give the scaling of the cur-
vature as a function of edge stress and other material
and geometric parameters. Since edge stresses can be
engineered by functionalizing the edges or by doping
regions close to the edge, our analytical results can be
used to study instabilities in these cases. Deformation of
graphene sheets arising from curvature and spatially
varying strain fields can lead to novel devices and phe-
nomena including valley filtering and creation of effec-
tive magnetic fields leading to zero-field quantum Hall
effect;19 therefore, there is great interest in methods for
creating rippled and folded/curved graphene sheets in
a controlled manner.14 Our work provides clear guide-
lines for engineering the deformation by controlling
edge stresses. Finally, as the shape of the deformed
sheets depends strongly on the stresses induced by
dopants at the edges, graphene sheets could poten-
tially find applications as a switch or a sensor.

METHODS
The instabilities of reconstructed edges are studied using

the reactive bond order (AIREBO)12 potential as implemented in
the molecular dynamics package LAMMPS.13 This potential al-
lows for covalent bond breaking and creation with associated
changes in atomic hybridization within a classical potential, thus
enabling simulations of nano- and micrometer-size sheets. In or-
der to study the stability of flat free-standing sheets, we first per-
turb them by allowing random out-of-plane displacement to the
atoms. The atoms in the perturbed sheet are then allowed to re-
lax using a conjugate gradient algorithm implemented in LAM-
MPS13 with an energy tolerance of 10�10 eV. The finite element
simulations were carried out using the Abaqus package (Simulia
Inc., Providence, RI). We treat graphene as an elastic plate with
bending and stretching moduli determined as explained in the
main text. Residual strain at the edges is applied by calibrating
the thermal expansion coefficients at the edge elements to ob-
tain appropriate edge stresses. As in the atomistic simulations,
we apply an initial perturbation to a nominally flat sheet and al-
low it to relax. All simulations are carried out in a finite deforma-
tion setting; that is, the effect of geometry changes on force bal-
ance and rigid body rotations are explicitly taken into account.
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